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ABSTRACT
Diffraction is a fundamental limit for optics. Diffraction of light can be compensated by an index of refraction
pattern or because of a nonlinear index change or nonlinearity. Nonlinearity can introduce new spatial scales. If one
is able to identify a nonlinearity that introduces intensity independent scale that cancels the wavelength, a
propagation of scale –free optics can occur. The idea behind scale-free optics can be studied by considering paraxial
ray scalar approximation. In this work, paraxial ray approximation of scale free optics has been considered which
results a Gausian scale free solution

I. INTRODUCTION
There is a very limited number of ways for artificially changing the refractive index of medium. But if one could be
able to arbitrary increase it, unprecedented possibilities would open the road to a novel generation of optical device.
The basic idea underlying scale-free propagation is that when light propagates in a medium in which non-linearity
introduces an intensity- independent response that amounts to anti-diffraction1,5.

Recent experiments report on the demonstration of scale-free propagation in disordered ferroelectric KTN:Li (a
newly engineered cu-doped lithium enriched potassium-tantalate-niobate) crystals6. In this system a specific role is
played by i) ferro-electricity, ii) photo-refraction i) Ferro-electricity is the property of a dielectric to manifest, below
a specific Curie temperature, a spontaneous breaking of the crystal symmetry and an associated finite static electric
polarization that can be switched through an external bias field. ii) A ferroelectric electro-optic crystal can also be
photorefractive. Photo refraction is characterized by a strong optical non-linearity mediated by an indirect optical
self-action: light photo induces charges from in-band impurities that redistribute in the crystal through drift and
diffusion and give rise to a space-charge field which, through the electro- optic effect, changes the index of refraction
and hence the propagation of the light itself. To understand the phenomena of diffraction cancelation, we recall that
photo-refraction leads to a diffusive nonlinearity7, 8, which profoundly alters beam propagation, in that diffraction is
governed by an effective refractive index9,11
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Where 0n is the unperturbed refractive index,  the wavelength and 2
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g is the effective quadratic electro-optic coefficient, NPR is the effective history-dependent low-frequency

dielectric susceptibility of the dipolar glass, BK the Blotzmann constant, T the crystal equilibrium temperature (i.e.
the temperature measured at a given instant) and q is the charge of the photo-excited carriers. Eqn.(1) is valid

for L  . As L  , 0effn n and diffraction is cancelled, the scale-free regime, independently of beam size

and intensity. Scale- free optics opens the way to a number of enticing effects, such as wavelength-intensive
propagation10 and scale-free spatial instability12.
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II. MODEL
In order to grasp the core idea behind scale-free optics, we consider the propagation of an optical wave in the

paraxial scalar approximation13. The slowly varying part of the optical field A (i.e. IA 2 is the optical

intensity) obeys the paraxial wave equation

0
222 2   nA
n
kAAik Z (2)

Where,  nck  is the wave number,  is the optical angular frequency, z is the propagation direction of

the beam and ),( yx are the two transverse coordinates and n is the electro optic response of the PNR [ 14-
19]. It is expressed as
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and the diffusive photo-induced electric field is
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Substituting (3) in (2)
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With 1211 ggg  (that depends on the specific PNR- supporting ferroelectric used).
Inserting the non linear response term, n in equation (2), the nonlinear propagation equation is
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The focusing/defocusing nature of the effect depends on the sign of 1211 ggg  .i.e., on the specific lattice
structure of the underlying composite crystal.

In the case of KTN:Li, here considered, 011 g is dominant with respect to 012 g which is an order of magnitude

smaller, such that 01211  gg ( 11g =0.16 m 4 , 12g =-0.02 m 4 and the effect is self focusing14.

Introducing the anstaz, ),,(
0 ),,(),,( zyxiezyxAzyxA  in equ. (6)
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Equating real and imaginary parts separately, we get following two equations:
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and
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We look for a solution of the form
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Collecting the coefficients of and from eqn. (11), we can easily derive the following pair of coupled nonlinear
differential equations.
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Eq.(13) can be stated in terms of PNR susceptibility: 510PNR thr   , which also states that there exist a

critical value for the non-linear optical response due the PNR15-19 for which L  ( 632.8nm  in our
experiments). Notably enough, the density and the size of the PNR, that are directly related to the cooling rate,
determine :PNR as a result the scale-free regime will exist only above a cooling rate threshold. Diffraction free
(zero effective wavelength) solutions of Eq.(6) are scale free. This effect is found in the Gaussian exact solution for
8 1.kK 

III. CONCLUSION

We find that the Gaussian scale-free solutions when the condition
2

28 1LkK


  is satisfied and diffraction is

fully cancelled. When, 8 1kK , a wholly new optics can be predicted.
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